
Proc. Annual Symposium on Research & Industrial Training, 01(2014) 1-6
Department of Electronics - Wayamba University of Sri Lanka

HARDWARE IMPLEMENTATION OF MODULUS OPERATION

P.Y.V. Hemantha*, W. A. S. Wijesinghe

Department o f Electronics, Wayamba University o f Sri Lanka, Kuliyapitiya, Sri Lanka
hemantha 1215 @gmail. com

ABSTRACT

This paper describes the hardware implementation of modulus operation. The modulus operation is

a basic mathematical operation which has wide range of applications. With the popularity of

programmable hardware, it has been exploiting to accelerate m athematical operation in many

applications such as cryptography. One of the main mathematical operations in many cryptographic

algorithms is the modulus operation. For hardware acceleration of those applications, it is

necessary to have hardware-based modulus operators. In this study we develop an algorithm to find

modulus operation of two numbers and ported into a Field Programmable Gate Array(FPGA) with

Verilog Hardware Description(HDL) language using a Finite State Machine (FSM).Simulation

results show the calculation is correct. This hardware algorithm of modulus operation can be used

for applications such as cryptography.

Key w ords: Modulus, FPGA, Verilog HDL.

1.0 INTRODUCTION

In computing, modulo (sometimes called modulus) operation finds the remainder o f

division o f one number by another. Given two positive numbers, a(the dividend) and b(the

divisor), amodulob (abbreviated as a mod b is the remainder of the Euclidean division of

abyb. For instance, the expression "5 mod 2" would evaluate to 1 because 5 divided by 2

leaves a quotient of 2 and a remainder of 1, while "9 mod 3” would evaluate to 0 because

the division o f 9 by 3 has a quotient of 3 and leaves a remainder of 0; there is nothing to

subtract from 9 after multiplying 3 times 3. That means “5 mod 2” is 1 and “9 mod 3” is 0 1.

Modulus operation is proposed for FPGAs that addresses the issue of scalability, flexible

performance and silicon efficiency for the hardware acceleration of modulus operation.

This paper proposes the hardware implementation o f the modulus operation and Hardware

Hardware implementation o f modulus operation 1

Description Language (HDL) uses to FPGA configuration. The novelty and the main

interest in this paper is the orientation towards the hardware implementation. The result is

hardware implement of the modulus operation for a fast, cheap and efficient. The benefits

of hardware implementation were given below.

• Performance

Taking advantage o f hardware parallelism, FPGAs exceed the computing power

o f digital signal processors (DSPs) by breaking the paradigm of sequential

execution and accomplishing more per clock cycle. BDTI, a noted analyst and

benchmarking firm, released benchmarks showing how FPGAs can deliver many

times the processing power per dollar o f a DSP solution in some applications.

Controlling inputs and outputs (I/O) at the hardware level provides faster response

times and specialized functionality to closely match application requirements.

® Time to market

FPGA technology offers flexibility and rapid prototyping capabilities in the face o f

increased time-to-market concerns. You can test an idea or concept and verify it in

hardware without going through the long fabrication process o f custom ASIC
' j • ,

design. You can then implement incremental changes and iterate on an FPGA

design within hours instead o f weeks. Commercial off-the-shelf (COTS) hardware

is also available with different types o f I/O already connected to a user-

programmable FPGA chip. The growing availability o f high-level software tools

decreases the learning curve with layers o f abstraction and often offers valuable IP

cores (prebuilt functions) for advanced control and signal processing.

• Cost

The nonrecurring engineering (NRE) expense o f custom ASIC design far exceeds

that of FPGA-based hardware solutions. The large initial investment in ASICs is

easy to justify for OEMs shipping thousands o f chips per year, but many end users

need custom hardware functionality for the tens to hundreds o f systems in

development. The very nature o f programmable silicon means you have no

fabrication costs or long lead times for assembly. Because system requirements

often change over time, the cost of making incremental changes to FPGA designs is

negligible when compared to the large expense of respinning an ASIC.

® Reliability

While software tools provide the programming environment, FPGA circuitry is

truly a “hard” implementation o f program execution. Processor-based systems often

Proc. Annual Symposium on Research & Industrial Training, 01(2014) 1-6
Department of Electronics - Wayamba University of Sri Lanka

Hardware implementation o f modulus operation.........

Proc. Annual Symposium on Research & Industrial Training, 01(2014) 1-6
Department of Electronics - Wayamba University of Sri Lanka

involve several layers o f abstraction to help schedule tasks and share resources

among multiple processes. The driver layer controls hardware resources and the OS

manages memory and processor bandwidth. For any given processor core, only one

instruction can execute at a time, and processor-based systems are continually at

risk o f time-critical tasks preempting one another. FPGAs, which do not use OSs,

minimize reliability concerns with true parallel execution and deterministic

hardware dedicated to every task.

• Long-term maintenance

As mentioned earlier, FPGA chips are field-upgradable and do not require the time

and expense involved with ASIC redesign. Digital communication protocols, for

example, have specifications that can change over time, and ASIC-based interfaces

may cause maintenance and forward-compatibility challenges. Being

reconfigurable, FPGA chips can keep up with future modifications that might be

necessary. As a product or system matures, you can make functional enhancements

without spending time redesigning hardware or modifying the board layout .

2.0 EX PERIM EN TA L PROCEDURE

2.1 Modulus Algorithm

This is the algorithm for the modulus function. If mod [a, b]= modvalue, {a=divident ,

b^di visor},

mod (a, b)

{

i=0, tb=0;

while (a>tb)

{

i= i+ l;

tb=b*i;

}

tb =b*(i-l);

modvalue=a-tb

}

2.2 Status Diagram

Hardware implementation o f modulus operation 3

The elements that constitute a state diagrams are rounded boxes representing the states and

arrows showing transitions to the next state. The activity section depicts the activities the

object performs while it is in that state. Every state diagram starts with an initial state,

which is the state where the object is created. Right after the initial state, objects change

their states, and the next state is determined by conditions based on activities. In some

cases, state diagrams represent a super state, which is a condition created when many

transitions lead to a particular state. The super state depicts that all states inside this

diagram transition to a redundant state, making the diagram more complex. A transition in

a state diagram is a progression from one state to another and is triggered by an event that

is internal or external to the entity modeled. An action is an operation that is invoked by an

entity that is modeled. A very traditional form of state diagram for a finite machine is a

directed graph3.
*

The below status diagram was related to the 2.1 algorithm.

Proc. Annual Symposium on Research & Industrial Training, 01(201411-6
Department of Electronics - Wayamba University of Sri Lanka

F igure 1: Status diagram for modulus operation

2.3 Hardware implementation

Hardware Description Language (HDL) used for the program FPGA. Programmed the

algorithm for modulus function by using Icarus verilog and Spartan 3 Field Programmable

Gate Array (FPGA) development board is used for that purpose. Output is displayed in

computer. Serial communication was the link from FPGA to computer4.

Hardware implementation o f modulus operation

3.0 RESULTS AND DISCUSSION

At the highest level, FPGAs are reprogrammable silicon chips. Digital computing tasks in

software and compiles them down to a configuration file or bit stream that contains

information on how the components should be wired together. In addition, FPGAs are

completely reconfigurable and instantly take on a brand new “personality'" when recompile

a different configuration of circuitry. In the past, FPGA technology could be used only by

engineers with a deep understanding of digital hardware design. The rise of high-level

design tools, however, is changing the rales of FPGA programming, with new technologies

that convert graphical block diagrams or even C code into digital hardware circuitry.

FPGAs provide hardware-timed speed and reliability. Reprogrammable silicon also has the

same flexibility of softw are running on a processor-based system, but it is not limited by

the number of processing cores available. Unlike processors, FPGAs are truly parallel in

nature, so different processing operations do not have to complete for the same resources.

Each independent processing task is assigned to a dedicated section of the chip, and can

function autonomously without any influence from other logic blocks' ,

Proc. Annual Symposium on Research & industrial Training, 01(2014) 1-6
Department of Electronics - Wayamba University of Sri Lanka

Martte Valu*
% answer̂ ?#}
^ Af/tO]

817:0]

Figure 2: GTK wave form for one of modulus function

SHardware implementation of modulus operation

4.0 CONCLUSION

In this study we have attempted to implement modulus operation in hardware. Since the

modulus operator is one o f basic mathematical operations, hardware-based algorithm for

modulus operation is necessary to applications such as cryptography where hardware

acceleration is concerned. Simulated results show that the hardware algorithm gives the

conect results. One drawback o f the algorithm is that it takes different clock cycles to

calculate the final result for different input values.

REFEREN CES

[1] . S.E. Eldridge, C.D. Walter, Hardware Implementation of Montgomery's Modular

Multiplication Algorithm, 42(6)(1993)693-699

[2] . A. Boute, T. Raymond, The Euclidean definition of the functions div and mod, ACM

Transactions on Programming Languages and Systems, TOPLAS, ACM Press , New York, NY,

USA, 14 (2), (1992) 27-144.

[3] . How to write FSM in Verilog http://www.asic-world.com/tidbits/verilog_fsm.html

[4] . BDTI Industry Report(2nd edition),FPGAs for DSP, Berkeley Design Technology Inc, 2006

[5] . http://www.xilinx.com/tools/isim.htm

Proc. Annual Symposium on Research & IndustriaJ Training, 01(2014) 1-6
Department of Electronics - Wayamba University of Sri Lanka

Hardware implementation o f modulus operation

