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ABSTRACT

The upper bounds for the regular Coulomb wave function and the Green function are 
involved with the integral equation. Using the uniform convergence of the integral equation for the 
wave function, it is found that the wave function is an analytic function of k  except at k  =  0. In this 

I respect it will be shown that S-matrix element is an analytic function of k  except at k  =  0 and at it 
, poles.
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INTRODUCTION

This research is incorporated the 
Coulomb potential to the elastic scattering 
theory through a Volterra type integral 
equation (Levinson, 1949) which directly 
follows from the corresponding SchrOdinger 
equation. It will be shown that this integral 
equation for the wave function is uniformly 
convergent with respect to the radial 
distance r  and formulated the elastic S- 
matrix element using the asymptotic form of 
the wave function for die full fledged 
potential with the Coulomb potential. Using 
the corresponding integral equations for the 
expressions involved in the elastic S-matrix 
element it will be shown that S-matrix 
element is an analytic function of k  except at 
k = 0  and at it poles.

METHODOLOGY

Wave Function and its Analytic Properties

The SchrOdinger equation relevant to 
this research discussion takes the form

and the well known factor is included in
the potential V itself where p is the reduced 
mass.

Fi(p) «  Cpl+10 tip), where C is a constant, 
and Flip) is the regular solution of the 
SchrOdinger equation corresponding to the 
Coulomb potential.

Flip) =  -  [ l  -  y  -  ~ jr^] Flip) (3)

where p = kr  and 7] =  —7^-—,zl 5z2 bemg
the proton numbers of the two nuclei 
scattering on each other.

It should be noted that, this research 
is interested in the scattering of point like 
charged particles. Studying of scattering of 
bound states having a volume can also be 
treated along the same lines.

This research is used of ther 
following result on differentiation under the 
integral sign (Gradshteyn & Rtzhik, 1980).

u i i r . k )  =

I ttt -  J /0r g ( r ,  l  k ) V i $ ) u i H  k ) d l ,  (1) 

where

g i r . l k )  =  Ft ik r)G l ik%) -  F ,(W (/c r )
(2)
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a d̂X = "da J 3(a)

5 / « « *  « ) + « ? £ * ’ (4)

Let us first show that the wave function 
u( (fc, r )  satisfies the Volterra type integral 
equation 
U iir.k) =

~  £  9x ir, l, k)V Q ,)ui (J k )d l
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£ g ( r , l , k )  = ± F lQcr)Glm -
F iik D ^ Q c r ) ,  

F' iQcr)Gi(Jcr) — Fj(fcr)G/(kr) = 1 (5)

£ l 3 ( r , l , k )  =  k 2 [F” (k r )G i ( k ^ )  -  

F i(k $ )G ” ( k r ) ]  =  k 2D ( p ) ,  (6)

where

D(p) = - [ l - f - l- ^ ] [ F l(kr)
p P‘

Gtm  -F^kSG t ikr )]

d £ ^ f ( x ' a) dx =dza

tJ ,{® (a ) ' a~)+G i z T : dx*l{<x) dxdx

^ Ui(/c ,r)= - [k2 - ^ - «i+1)

^ ( r ) ] uz ( ^ r )

(7)

(8)

Asymptotic form of Ui(k,r) for the 
complex potential with the Coulomb 
potential

The series expansion for 
Fi(p)and Gi(p) can be written down as 
(Flugge, 1959).,

F i(p) =
—  n  \e 2  t/2 (m 4^  

2 IL r ( 2m + l)  Jl ^x,m(z)> (9)

Giip) = ,

;IL
2 *£ /i

e 2 n i -m + x

r(2m+D Jl m/ (10)

, _  2i)A}-x-Aj-2
} ~  U+OU-I-V ’

where Aj =0, j  < l + 1 , Ai+1 =1.

If M 2 < a  + l ) 2d 2 , i . e . ^ - < d ,

|dfc| = » ,  n = * =% jrL > k * 0 ,

it is implied that |0 j(fer)| < 1  +  +
d2|(kr) |2 , d3 |(fcr) |3 ,
---------------------- --------------------------(- . . .

2! 3!

I0 .(*r)l < C i o l g ^ r  «"•.

r  > 0  .

|Fi(/cr)| , for some
constant C{, and also for r  > f  > 0  .

The asymptotic form of Ft takes the form

Ft(fcr)~sin(/rr — rjlog2/cr — y  + <7{(fc) ),

where c7[(k) =arg T(I + 1  + £77)

is the constant Coulomb phase shift.

Gj(fcr) is defined so as to have an 
asymptotic phase differing by 90° from that 
ofiFi(kr) and ijormalized so that

Gi(kr)~cos(kr — 7/log2 kr — y  + &i(k) ).

F i —^i Wi ~  HD> Gt = \  (Hi + HO, (13)

where z  = 2 ip , x  =  i t| .

Fj(kr) = Ci(kry+10i[kr] , where

Ci =

0i(kr) =
1  +  -2- (fer ) + , 27?2-(i+1) ( - ^ 2  + ... Q!)

l + l k '  2(l+l)(2I+3)V> '  ' '

where (Flugge, 1959)

H{ =
nir  ~ ^ n i+ l-lV) and

■

r(m+M1 e r(2 l+2) iexp[-r (m  +  j - x ) [rtm+f+x)]
( 14)

0 z ( p ) = E ; = m ^ P y- ' - 1
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H =

(15)

when m  = l +  -  ,x  =  iij, WXim(z)~e t z x .

When

\g(r,^,k)\  <
v (r-fl+ < flo g | a + m )1 \kr\l+1 

Ke (l+|fcr|) '+ 1
T > 1 >  0  

(18)

In general, now it can write

|Fj(fcr)| <  Ke” |Jtr| ,+1
(l+|fcr|)'+i (1?)

g(r ,^ ,k )  =  Fi(.kr)Gi(kQ -  F ikO G^kr) ,  

using above formulations, it gets,

g(r, f, k) = £  [H[(kr)Ht*(kO -
N;(kr)Ht(kO] (16)

g(r,(,k) =
Yt [-W -Xim(-kr)W x,m(kO e-nxi + 
W ^ k r W ^ i - k O e - ™ 1]

to O’# *01 <

\ k v \ ^  =  e £7il°e lk r l <  g<tiog|kr|  ̂

|fc£|0? =  gii?log|fcf| =  e d log |kf|

g 2 |fc |( |r -3 |+ d Io g | +  g -d lo g j  <

Ciev(r-S)+dlo^

it can be written as

\gCr,f ,k)\<
Mr-o+cao& q+ifcfp' |kr| t+1 

Ae (l+lkr|) '+1 Ifcfl' »r > ^ > 0

(20)

Analyticity of Ui(k, r).

Analyticity of u{ (fc, r )  depends on 
Fj(/c,r)and g(r , f ,  k). These functions are 
bounded for k  > 0  by the following 
expressions,

i F ^ K K e ^ - ^ -^ - , ,  (2 1 )

\gi(r,z,k)) <
„ v(r-f)+dl°gi (1-Hkfl)1 |fer]i+1

r Iftfl' (l+lfcrD'+l'

r  >  f  > 0  (2 2 )

where K is some finite constant. Let us now 
consider a sequence of function ui(r,k) 
defined by

ujn\ r , k )  =

l S r - ^ / or gi(r,f, k )V (0  k)dt;
(23)

\g ( r ^ ,k ) \  < K lJ$<r-0 +**+*n<r-S«ua$

< /fe t'(r- !)+dlogi

u ® (r, fc) = 0 .

By iteration and using the inequalities 
(2 1 ), (2 2 ) we get

FiQcr) =  C,(fcr),+1 0 ,[fcr]

GiQcr) = Di(kr)~ldi(kr),

9i(kr) is an ascending series starting with 1 . 

Finally it can write

|“ i(n)O'. k)  -  (r, k)| <1

fL y- »Cr-Q+«IU>gjCl+IW)1 IM1*1 [ u f " 2)(f, fe) -
W|< a+|*r|)>-«K'-?;L
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Since,

l* ltf.fck)l <
K  r (f-0+ < aog | (l-Hfcfl)' ifcfi'*1

Ifcfl1 (l+lfcfl) '+1

= K \ k { \

(1+lfcfl) (24)

Then by some calculations it can get finally,

equation it follows that Uj(—fc,r) = 
Uj(k , r), Ai(k) is an even function of fc and 
0t (fc) is an odd function of k. Let us define 
(Gradshteyn and Rtzhik, 1980).

F,(fc) = 1 + ikl (5, k)dl

= / f  >(*) + iF?\k), (26)

where
|uICn)(r ,fc )-u |(n- 1)(r(k)| =

m e vr+d l o g r ^Kn
(l+|fer|)

F;(1)(fc) =
1 -  k ' g G t k S i V f S t o  & W I  (27)

£ >  0 . 

Hence
f{ 2) (fc) = k l C  F(kS)V(S)uI a  k)dS (28)

«t(n) (r, k) -  u\n x) (r, fc) | <

^ n ( i r i S ^ eVr+dl0gr[i(r)]n" 1'
(25)

where L(r) = ,r  e - dl°gif|V(Q| 
J +0 (i+|kfl) d f , 3 > 0 .

Thus the sequence u ^ ( x , k )  
approaches uniformly to the limit Ui(x, k), 
provided L(x) is finite. Each U; (r, k) is 
analytic, since it involves analytic function 
Fi(kr) and gi(r ,^ ,k)  only. Hence the limit 
Ui(r, k) is analytic in the upper half-plane.

Elastic S-matrix element

The wave function ttt(k ,r) is given by

Ut(r, k) =
- 1 £ 9i(r,l,  k)V(S)Ul (l, k )d l

1

with the boundary condition

u t(0 ,k) = 0 .

As r  tends to infinity,

u i foO = j £ r  sia(kr ~  7  + 6i (fc) X

where 0 j(fc) is the asymptotic phase which 
is a function of k. By the SchrOdinger

In case of the Coulomb potential, let

Ui(r,k) =
^ T T - ^ / or ffiCr,l,k)V(S)uL ( l  k )d l  

= 7 TdFiCl\ m  ( kr )+ Fj2 (k)G((kr)] and
as r  -> oo,

= ^  [ e T +^  ( - 1 F «  (k)

+  ^U (2)(k»

i(kr-T ]\n2kr-  f + a , )  l (l) +
v2< 1 v y

^ i (2)(k))]

Now it can be defined the elastic S- 
matrix element as

5,(k) = ^W +tF^Cfc) 2tff, (29)

Since Ft(kr) -> sin ycr — 2T) ln(2 kr) —

Y + crt J and Gt(fcr) -» cos(kr —

2rj ln(2 kr) — -7  + <r( (fc)).

It is clear that both (k) and 
Fj (k) are real when k is real and hence
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|5j(/c)| = 1 follows for real k. Now, f/^ O c)
and Fj (fc) are not analytic functions of 
k  at k = 0 .

It is, however, clear that die 
both F,(1)(fc) and F^2\ k )  are analytic 
function of except at k  =  0 , and hence the 
elastic S-matrix element is an analytic 
function of k  except at k  =  0 , which is an 
essential singularity, and at it poles.

CONCLUSION

The integral equation method is 
studied for complex potential with the 
Coulomb potential to derive analytic 
properties of the wave function and the 
elastic S-matrix element. First of all, the 
relation between the Volterra type integral 
equation and the Schrodinger equation is 
justified using simple relations of the 
Coulomb wave functions. In die next step, 
upper bounds for the regular Coulomb wave 
function and the Green function involved 
with the integral equation are derived. Using

the uniform convergence of the integral 
equation for the wave function, it is found 
that the wave function is an analytic 
function of k  in the upper half plane. In this 
respect it is found that the integral equation 
for the wave function converges uniformly 
and hence it is analytic function of k except 
at k  =  0 .

I
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