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ABSTRACT

The upper bounds for the regular Coulomb wave function and the Green function are
involved with the integral equation. Using the uniform convergence of the integral equation for the
wave function, it is found that the wave function is an analytic function of k except at k = 0. In this
respect it will be shown that S-matrix element is an analytic function of k except at k = 0 and at it

, poles.
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INTRODUCTION

This research is incorporated the
Coulomb potential to the elastic scattering
theory through a Volterra type integral
equation (Levinson, 1949) which directly
follows from the corresponding Schrodinger
equation. It will be shown that this integral
equation for the wave function is uniformly
convergent with respect to the radial
distance r and formulated the elastic S-
matrix element using the asymptotic form of
the wave function for the full fledged
potential with the Coulomb potential. Using
the corresponding integral equations for the
expressions involved in the elastic S-matrix
element it will be shown that S-matrix
element is an analytic function of k except at
k = 0 and at it poles.

METHODOLOGY

Wave Function and its Analytic Properties

The Schrédinger equation relevant to
this research discussion takes the form

ul(rr k) =
D 93 VEuG L, ()
where
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and the well known factor—zrf is included in

the potential V itself where u is the reduced
mass.

Fi(p) = Cp**1@,(p), where C is a constant,
and F,(p) is the regular solution of the
Schrédinger equation corresponding to the
Coulomb potential.

2 _ I(+1)
P p?

Flp)=-[1- Fi(p) 3)

4mz,2,€% .
where p = kr andn = ﬁ+:,zl,zz being

the proton numbers of the two nuclei
scattering on each other.

It should be noted that, this research
is interested in the scattering of point like
charged particles. Studying of scattering of
bound states having a volume can also be
treated along the same lines.

This research is used of th'é_‘
following result on differentiation under the
integral sign (Gradshteyn & Rtzhik, 1980).

g e 1o 0)dx = S f(p(@), @) -

B rG@), 0 + [ Ly

3(a) da (4)

Let us first show that the wave function
u;(k,7) satisfies the Volterra type integral
equation

u(r,k) =

) L (7 0 (3, 0V Dy B a3
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= g(r% k) = - F(kr)G,(kB) —
Fy(k8) < Gy (kr),

F'y(kr)Gy(kr) — F(kr)G (k) =1 (5)

f_;g(r %, k) = k2[F)' (k)G (K3) —
F (kDG (kr)] = k*D(p),

where

(6)
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Asymptotic form of u;(k,r) for the
complex potential with the Coulomb
potential

The series expansion for
Fi(p)and G;(p) can be written down as
(Flugge, 1959),

F (P)I:

T
1 eT[‘(:—+-m+x)
EI[ r(zm+1) ]I

G, (p) =,

e—-ui/z(rm—;) M

xm(2),  (9)

1 e%xr(—l—i-mﬁt) i/ ( 3)
L e )l 2(ms) iF
21l r(zm+1) lle “ Mms

(10)
where z=2ip,x=in.

F(kr) = C;(kr)'*1@,[kr] , where

i ———-r(l+1 —in)

|2 r(zi+2) and

@i (kr) =
14+ (kr) +

+1

2n2-(1+1)
2(1+1)(2143)

B:1(p) = Tjmte1 45 077177

(kr)? + - (11)
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A — 27)A!-1~A!_2
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where 4; =0, j <l+1, A, =1

If In)2 < 0+ 1D?d?, ie. 1l < 4,

RS

ldk| = v, n= 4ne?z,z,

“an k#0,

it is implied that @, (kr)| < 1 +d|(kr)l

Q)2 | RSP
2] + 3} +

~+

Ik.r|l+1

I(Dl(kr)l < edlklr < CIW e’ ,

r=0.
. IkrlH»l

vr
constant C;, and alsofor r > &> 0.

for some

The asymptotic form of F; takes the form
Fy(kr)~sin(kr — nlog2kr — -125 + agy(k)),
where (k) =arg I'(l + 1 + in)

is the constant Coulomb phase shift.

G;(kr)is defined so as to have an
asymptotic phase differing by 90° from that
ofiFy(kr) and normalized so that

G;(kr)~cos(kr — nlog2kr — %" + oy (k) ).

Fp=o(H—H),G =s(H +H), (13)

where (Flugge, 1959)

Hf =

oo 2 + 2 )] [ e
(14)
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H =
1

iexp [— = (m += )] [———x)]— Wxm(—2)

l"( +——x) (1 5)

1 . -z
when m=1+>,x = in, Wi m(2)~e2z% .

When
g(r, &, k) = F(kr) G (k&) — Fi(k&)G(kr),

using above formulations, it gets,

g(r, & k) = — [H(kr) H} (kE) —
H; (kr)H,(k§)] (16)

g, & k) =

[~ W (KT W (KE)e ™ +

Wx,m (kT ) W—x,m(—'kf) e-—nﬂ] (1 7)
Ig(r E‘k)l <

T Xe-8) [ o ~2k(r=D ) IerlE K&
K| =5 e l['e Ve + lkrtx]l

Ikrlin = einlog|kr| < edlog|kr| ,

[k&|i = ginloglké] = gdloglkf]

—-2k(r-%) !krlx 1™
[l e lkfl" ikrl"] < .
eZIk](|r—§|+dlog§ + e—-dlogg <

v(r-%)+dlog-

it can be written as

lg(r, &, k)| < Kje Ll(r ﬂ+ﬂd+2|k|(r-§)+dlog§

< Kev(r—§)+dlogz
Fy(kr) = C (k)@ [kr]
Gi(kr) = Dy(kr)™'6,(kn),
6, (kr) is an ascending series starting with 1.

Finally it can write
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lg(r.&, k)l < .
v(r-D+dlogy _(1HkED Jkrit?

ke a+erpet gt 0T 23>0
(18)
In general, now it can write
kT|l+1
|F(kr)| < Ke™ i (19)
lg(r.& k)l < A
v(r—£)+dlogy (1+|kED! |kr)
ke A+t jegr T 23>0
(20)
Analyticity of u;(k, 7).

Analyticity of u;(k,r) depends on
F;(k,v)and g(r,&,k). These functions are

bounded fork=>0 by the following
expressions,
]leH'l

|Fi(kr)l < Ke™ o (21)
|g:(r. 8, k)] <
Ke¥ - E)+dlogy (AHKED!  fier 1

IkEIE (A+ikrpH
r=2&>0 (22)

where K is some finite constant. Let us now
consider a sequence of function u;(r,k)
defined by

ul(n) (r, k) =

B0 LT g & V) w0 K dE
(23)

ul(o) (r,k) =0.

By iteration and using the inequalities
(21), (22) we get

lufn)(r, k) —yu; =1, k)l <:

Jio g P r—E)+alog] (LHkED? _ir s
kel el

v [0 -

(g, b)) df'
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Since,
g€, &, k)] <
Ke'¢™ §)+dlogy (A+IkED'  thgl™*!
IkEIL  (A+|REDIHT
[kE|
(1+kE[) (24)

Then by some calculations it can get finally,

[0 k) - uf* D, k)| =
n__ i+t evr+dlogr e~dloglay ()]
K T [f+° A+kED d‘f]

£E>0.

Hence
qu") (r, k) —u D, k)l <
K" (1_:,":)1“1 evT+dIogr [ (7)]n—1,
(25)
where L(r) = f:of%‘%ﬂdf 2> 0.
Thus the sequence ul(n) (x, k)

approaches uniformly to the limit u;(x, k),
provided L(x) is finite. Each ul(n) (r. k) is
analytic, since it involves analytic function
Fy(kr) and g,(r, ¢, k) only. Hence the limit
u;(r, k) is analytic in the upper half-plane.

Elastic S-matrix element

~ The wave function u; (k, 7) is given by

w(r, k) =

B 2 T (3 OV ®w G k) d3
with the boundary condition

1;(0,k) = 0.

As 7 tends to infinity,

(k) = 2 sin(kr — =+ 6,(k) ),

kl+1

where ,(k) is the asymptotic phase which
is a function of k. By the Schrodinger
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equation it follows that wu;(—k,r) =
w(k,7), 4;(k) is an even function of k and
6,(k) is an odd function of k. Let us define
(Gradshteyn and Rtzhik, 1980).

Fik) =1+ ik [TTRKD + G, (kDI Dy (5, k)d3

= FO k) + iFP(k), (26)
where
RV =
1—k [ 6BV, G k)d3 @27)

FEP () = k! [FUHVEw G k)ds (28)

In case of the Coulomb potential, let

Uy (T, k) =
Fy(kr) %Ior gf(r, 35V, (3 k)d3

kl+1 -

= T [V (F, (kr y+ FE(k)Gy(kr)] and

asr — o,

1 e ~i(ier—ninzier— T 4a)) -

=@ 7 F 000

1
+ EF 1(2) (k)
o 3 1
4 i(kr—min2ier— S+01) ( % cml) @0+
SEP 00

Now it can be defined the elastic S-
matrix element as

FP to+iF® (k) o200y

Si(k) = FD(o—iFPD (k)

(29)

Since F;(kr) — sin (kr — 2nIn(2kr) —
4+ ay(k)) and G,(kr) — cos(kr ~
2n In(2kr) — l?" + a(k) ).

It is clear that both F (k) and
F,(z)(k) are real when k is real and hence
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[S: (k)| = 1 follows for real k. Now, Fl(l) (k)
and Fl(z)(k) are not analytic functions of
katk = 0. '

It is, however, clear that the
both Fl(l)(k) and Fl(z)(k) are analytic
function of except at k = 0, and hence the
elastic S-matrix element is an analytic
function of k except at k = 0, which is an
essential singularity, and at it poles.

CONCLUSION

The integral equation method is
studied for complex potential with the
Coulomb potential to derive analytic
properties of the wave function and the
elastic S-matrix element. First of all, the
relation between the Volterra type integral
equation and the Schrdodinger equation is
justified using simple relations of the
Coulomb wave functions. In the next step,
upper bounds for the regular Coulomb wave
function and the Green function involved
with the integral equation are derived. Using
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the uniform convergence of the integral
equation for the wave function, it is found
that the wave function is an analytic
function of k in the upper half plane. In this
respect it is found that the integral equation
for the wave function converges uniformly
and hence it is analytic function of k except
atk=0.
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